Part Number Hot Search : 
MAX27 2T200A 3238E SKM150 100EL LRD14 AMC7584 FM25C16
Product Description
Full Text Search
 

To Download GA150TS60U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 50056D
GA150TS60U
"HALF-BRIDGE" IGBT INT-A-PAK
Features
* Generation 4 IGBT technology * UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode * Very low conduction and switching losses * HEXFREDTM antiparallel diodes with ultra- soft recovery * Industry standard package * UL approved
Ultra-FastTM Speed IGBT
VCES = 600V VCE(on) typ. = 1.7V
@VGE = 15V, IC = 150A
Benefits
* Increased operating efficiency * Direct mounting to heatsink * Performance optimized for power conversion: UPS, SMPS, Welding * Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C ICM ILM IFM VGE VISOL PD @ TC = 25C PD @ TC = 85C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector CurrentQ Peak Switching CurrentR Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
600 150 300 300 300 20 2500 440 230 -40 to +150 -40 to +125
Units
V A
V W C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink S Mounting Torque, Case-to-Terminal 1, 2 & 3 T Weight of Module
Typ.
-- -- 0.1 -- -- 200
Max.
0.28 0.35 -- 6.0 5.0 --
Units
C/W N. m g
www.irf.com
1
05/20/02
GA150TS60U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 600 -- -- VGE = 0V, IC = 1mA -- 1.7 2.3 VGE = 15V, IC = 150A -- 1.7 -- V VGE = 15V, IC = 150A, TJ = 125C Gate Threshold Voltage 3.0 -- 6.0 IC = 750A Temperature Coeff. of Threshold Voltage -- -11 -- mV/C VCE = V GE, IC = 750A Forward Transconductance T -- 152 -- S VCE = 25V, I C = 150A Collector-to-Emitter Leaking Current -- -- 1.0 mA VGE = 0V, VCE = 600V -- -- 10 VGE = 0V, VCE = 600V, TJ = 125C Diode Forward Voltage - Maximum -- 3.3 -- V IF = 150A, VGE = 0V -- 3.2 -- IF = 150A, VGE = 0V, TJ = 125C Gate-to-Emitter Leakage Current -- -- 250 nA VGE = 20V
Dynamic Characteristics - TJ = 125C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff (1) Ets (1) Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 624 87 212 241 145 336 227 6.0 12 19 14000 860 180 172 113 9696 2000 Max. Units Conditions 937 VCC = 400V 130 nC IC = 94A 317 TJ = 25C -- RG1 = 27, RG2 = 0, -- ns IC = 150A -- VCC = 360V -- VGE = 15V -- mJ -- 33 -- VGE = 0V -- pF VCC = 30V -- = 1 MHz -- ns IC = 150A -- A RG1 = 27 -- nC RG2 = 0 -- A/s VCC = 360V di/dt =1300A/s
2
www.irf.com
GA150TS60U
120
F o r b o th :
100
LOAD CURRENT (A)
D u ty c y c le : 5 0 % TJ = 1 2 5 C T sink = 9 0 C G a te d riv e a s s p e c ifie d
P o w e r D is s ip a tio n = 92 W
S q u a re w a v e :
80
60
6 0 % o f ra te d v o lta g e
I
40
Id e a l d io d e s
20
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 25 o C TJ = 125 o C
TJ = 125 oC
100
100
TJ = 25 oC
10
10 1 2
V = 15V 20s PULSE WIDTH
GE 3
1 5 6 7
V = 50V 5s PULSE WIDTH
VCE = 25V CC 25V 80s PULSE WIDTH
8 9
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
GA150TS60U
160 3.0
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
Maximum DC Collector Current(A)
120
I C = 300 A
80
2.0
I C = 150 A I C = 75 A
40
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
Th erm a l Im p e d an ce - Z
th J C
D = 0.5 0
0.1
0.20 0 .1 0 0 .05 0 .02 0 .0 1 S in g le P u ls e (Th e rm a l R e sis ta n c e )
Notes: 1. Duty factor D = t
P DM
t 1 t2
1
/t
2
2. Peak TJ = PDM x Z thJC + T C
0.01 0.0001
0.001
0.01
0.1
1
10
100
1000
t 1 , R ec ta ng ular P u lse D u ra tio n (Se c o n d s)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA150TS60U
25000
20000
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 94A
16
C, Capacitance (pF)
Cies
15000
12
10000
8
C oes
5000
C res
4
0 1 10 100
0 0 100 200 300 400 500 600 700
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
30
Total Switching Losses (mJ)
25
Total Switching Losses (mJ)
V CC = 360V V GE = 15V 125C TJ = 25 C I C = 150A
100
RG =27;RG2 = 0 G1 = Ohm VGE = 15V VCC = 360V
IC = 300 A IC = 150 A
20
10
IC = 75 A
15
10 0 10 20 30 40 50
1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG1 Gate Resistance () RG , ,Gate Resistance (Ohm)
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
GA150TS60U
50
Total Switching Losses (mJ)
T J = 150 C VCC = 360V 40 VGE = 15V
RG =27;RG2 = 0 G1 = Ohm
400
350
V G E = 20V T J = 125C V C E m easured at term inal (Peak V oltage)
300
250
30
200
SAFE O PERATING AREA
20
150
100
10
50
0 0 50 100 150 200 250 300
0 0 100 200 300 400 500 600
A
700
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
1000
Fig. 12 - Reverse Bias SOA
16000
I F = 3 00 A
In sta n ta n e o u s F o rw a rd C u rre n t - I F (A )
I F = 1 50 A I F = 75 A
12000
100
T J = 125 C T J = 25C
Q R R - (nC )
8000
4000
VR = 3 6 0V TJ = 1 25 C TJ = 2 5C
10 1.0 2.0 3.0 4.0 5.0
0 500
1000
1500
2000
F o rw a rd V o lta g e D ro p - V F M (V )
di f /dt - (A /s)
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA150TS60U
300 200
I F = 30 0A I F = 15 0A I F = 75 A
200 160
I F = 30 0A I F = 15 0A I F = 75 A
I R R M - (A )
100
t rr - (ns)
120
80
40
VR = 3 6 0V TJ = 1 25 C TJ = 2 5C
0 500 1000 1500 2000 0 500
VR = 3 6 0V T J = 1 25 C T J = 2 5C
1000 1500 2000
d i f /dt - (A /s)
di f /dt - (A /s)
Fig. 15 - Typical Reverse Recovery vs. dif/dt
Fig. 16 - Typical Recovery Current vs. dif/dt
www.irf.com
7
GA150TS60U
90% Vge +Vge
Vce
Ic
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
t1 + 5 S V c e Ic Vceic d tdt t1
Fig. 17 - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,
td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
E re c =
t4 V d idIc t dt Vd d t3
t1
Fig. 19 - Test Waveforms for Circuit of Fig. 17,
Defining Eon, td(on), tr
Fig. 20 - Test Waveforms for Circuit of Fig. 17,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
GA150TS60U
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 21. Macro Waveforms for Figure 17's Test Circuit
RL= 0 - 480V
480V 4 X IC @25C
Figure 22. Pulsed Collector Current Test Circuit
www.irf.com
9
GA150TS60U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17 S For screws M6. T For screws M5. U Pulse width 50s; single shot.
Case Outline -- INT-A-PAK
94.70 93.70 80.30 79.70 3.689] [3.728 NOTES : 1. ALL DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 2. CONTROL LING DIMENS ION: MILLIMETER. 4.50 3.50 6 7 17.50 16.50 1 8 9 2 3 5 4 6.80 2X O 6.20 .244] [.267 4X FAST ON TAB (110) 2.8 x 0.5 [.110 x .020] .650] [.689 .138] [.177
[
3.161 3.138] 2X 23.50 22.50 .886] [.925
11 10 34.70 33.70 1.327] [1.366
3X M5 8 [.314] MAX.
42.00 41.00
1.614] [1.654
8.00 6.60
.260] [.315
24.00 23.00
.906] [.945
30.50 29.00
1.142] [1.201
0.15 [.0059] CONVEX 92.10 91.10 3.587] [3.626
8.65 7.65
.301] [.341 32.00 31.00
2X 13.30 12.70
.500] [.524
[
1.260 1.220]
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/02
10
www.irf.com
This datasheet has been download from: www..com Datasheets for electronics components.


▲Up To Search▲   

 
Price & Availability of GA150TS60U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X